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Abstract
Hydrolytic enzymes like chitinase are key factors in entomopathogenic fungi infections of insects. Chitinolytic activity of
Lecanicillium lecanii was detected when growing in chitin and in grasshopper cuticle (Sphenarium purpurascens) in solid-
state fermentation (SSF); the highest levels were reached when the fungus grew in chitin. Expression levels of chitII gene in L.
lecanii depend on the carbon source present in the medium, and an increment in chitII gene expression was observed through
fermentation time. Among the carbon sources evaluated, chitin showed the highest levels of chitII gene expression. When grown
in glucose, basal levels of expression of chitII gene were detected, suggesting that the L. lecanii chitinolytic system is subject
to an induction/repression mechanism. Electrophoresis in SDS-PAGE of a partially purified extract obtained from the growth
on chitin and S. purpurascens cuticle revealed a band of 23 kDa approximately with β-N-acetyl-glucosaminidase activity in a
zymogram analysis.

Keywords: chitinases, solid-state fermentation, RT-PCR, Lecanicillium lecanii, chitII gene.

Resumen
Se determinó la actividad quitinolı́tica de Lecanicillium lecanii al crecer en quitina y cutı́cula de chapulin (Sphenarium
purpurascens) en fermentación en estado sólido. Ası́ mismo, se midieron los niveles de expresión del gen chitII de L. lecanii
observando que estos dependen de la fuente de carbono utilizada y se presentó un aumento de la expresión en función del
tiempo de fermentación. Los más altos niveles de expresión del gen se observaron al crecer en quitina, sin embargo, en
glucosa se detectaron niveles basales lo que sugiere que el sistema quitinolı́tico de L. lecanii está sujeto a un mecanismo
de inducción/represión. Extractos parcialmente purificados obtenidos del crecimiento en quitina y cutı́cula de saltamontes se
analizaron en zimogramas y se observó una banda de aproximadamente 23 kDa con actividad de β-N-acetil-glucosaminidasa.

Palabras clave: quitinasas, fermentación en estado sólido, RT-PCR, Lecanicillium lecanii, gen chitII.

1 Introduction

The development and application of biological agents
that preserve natural resources and the environment in
pest control products are an important alternative in
agriculture. Entomopathogenic fungi have been used

in pest biological control; during the infective process
they synthesize hydrolytic enzymes like protease and
chitinase which degrade the cuticle of insects (St Leger
et al., 1986a). This opens the possibility of using these
fungi for other applications such as a biotechnological
integrated process for transforming shrimp shell waste
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and insect cuticle into high valued products (like
chitosan in the pharmaceutical industry) which are
the basis for the production of biological products
used as micopesticides, and in the production of
spores as bioinsecticides. In recent years, there has
been a renewed interest in solid-state fermentation
(SSF) due to its high productivity of bioactive
compounds (Ruiz-Leza et al., 2007). Studies on
entomopathogenic fungus Lecanicillium lecanii in
SSF showed proteolytic and chitinolytic enzymes
(Barranco et al., 2002). Chitin is hydrolyzed to
its monomer by the synergistic and consecutive
action of two enzymes, namely endo chitinases
(EC 3.2.1.14), which hydrolyze polymer in random
manner, and N-acetylglucosaminidase (chitobiase,
EC 3.2.1.30) which preferentially attacks lower
chitooligomers to produce N-acetyl-D-glucosamine
(GlcNAc) monomers (Patil et al., 2000).

During growth, fungi synthesize chitinolytic
enzymes its production is induced by adding chitin
to the culture medium (Taylor et al., 2002; Li et
al., 2004; 2005). Gene expression of chitinases in
fungi is regulated by an induction/repressor system
in which chitin or the GlcNAc waste products act as
inductors, while glucose or any easily metabolizable
carbon sources act as repressors (Blaiseau et al.,
1992). Repression through glucose is a common
phenomenon in chitinase gene expression in fungi
grown in submerged fermentation culture (SmF) (De
las Mercedes et al., 2001). In the presence of glucose,
regulator protein CreA/Cre1 binds to the consensus
sequence (SYGGRG) and represses chitinase genes
transcription (Strauss et al., 1995; Ilmen et al., 1996;
Stapleton and Dobson, 2003). Most studies about the
expression of chitinolytic genes in fungi have been
carried out only in SmF and few have been done in
SSF. This system offers economical advantages over
SmF, such as the use of a simple medium of production
and growth as it uses agro industrial waste, as well as
low cost equipment (Pandley et al., 2000).

The use of L. lecanii is an alternative to chemical
pesticides, although its utility is limited due to the
relatively low death rate of insects (St Leger et al.,
1995). In order to improve virulence, a detailed
knowledge of pathogenic molecular mechanisms of
the fungus is necessary. L. lecanii is currently being
evaluated as a pathogenic agent in insects. Implied
genes in fungus pathogenesis towards insects have
been isolated and characterized (Zhen-Xiang et al.,
2005). Gene expression studies are crucial to elucidate
pathogenic function and fungus development. In
this study, the effect of an easily assimilated

carbon source and complex substrates as chitin and
grasshopper cuticle (Sphenarium purpurascens) on
β-N-acetylglucosaminidase activity, as well as the
expression of chitII gene of L. lecanii grown in SSF
have been studied.

2 Material and methods

2.1 Microorganism

L. lecanii ATCC 26854 was grown in potato dextrose
agar (PDA), at 25◦C during seven days. Spores were
collected in a solution of Tween 80 at 0.05%.

2.2 Solid-state fermentation

The culture was carried out in 500 mL Erlenmeyer
flasks using bagasse in a mineral medium with (gL−1):
(NH4)2SO4, 6; MgSO4, 1.2; NaCl, 1; KH4PO4, 15;
FeSO4·7H2O, 0.1; ZnSO4·7H2O, 0.028; and MnSO4·

H2O, 0.032 as support. Glucose (Sigma), chitin
and S. purpurascens (60 gL−1) were used as carbon
sources. Flasks contained 35 g of humid matter, and
SSF conditions were: initial humidity 75%, pH 6,
temperature 25◦C. Inoculation was carried out with
1 × 107 spores/g humid weight. Enzymatic extract
was obtained after five days of fermentation, weighing
the contents of each flask and adding distilled water
in a proportion 1:1. Afterwards, this extract was
homogenized and compressed and the supernatant was
centrifuged 10 min at 5000 rpm. Samples of fermented
fungi in stationary phase were taken for extraction and
purification of total RNA.

2.3 Chitin and S. purpurascens cuticle
treatment

Chitin and S. purpurascens flakes were treated with
NaOH 0.1 N for 30 min; they were washed two times
with distilled water, then with HCl 0.2N for 30 min
and with distilled water again. The material was dried
at room temperature (RT) and sieved through a 32
mesh. Later, it was sterilized at 121◦C, 15 min, and
kept at RT for later use.

2.4 Chitinolytic activity

Chitinolytic activity was determined according to
Coudron et al. (1984) for each carbon source, using
p-nitrophenol N-acetyl-β-D-glucosamine (Sigma
Chemical Co.) as substrate. To a mixture of 150
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µL of deionized water, 200 µL of citrate-phosphate
buffer 0.2M (pH 5.6), 200 µL of substrate (1.0 mg
mL−1), and 50 µL of enzymatic extract were added.
The reaction was incubated for 1 h at 37◦C and 180
rpm. Reaction was stopped by adding 1 mL of NaOH
0.02 M. One unit of enzymatic activity was defined
as the amount of enzyme that releases 1 µmol of p-
nitrophenol per min at 400 nm. All experiments were
triplicated.

2.5 Electrophoresis and zymogram

In order to determine the protein profile of L. lecanii
growing in glucose, chitin and S. purpurascens cuticle,
SDS-PAGE on 11% (w/v) polyacrylamide gels was
performed according to Laemmli (1970). Gels
were stained with coomasie blue. Zymograms were
run according to Guthrie et al. (2005), proteins
were separated in polyacrylamide gel electrophoresis
(PAGE) in native conditions. Crude protein samples
were prepared in 125 mM Tris- HCl (pH 6.8), 20%
glycerol (v/v) and 0.2% bromophenol blue. Native
gel was simply washed in distilled water for 5
min before being placed in the agarose-substrate
solution previously prepared by heating 20 mL of 100
mM sodium acetate (pH 5.6), 1% agarose at 50oC.
The substrate 4-methyllumbelliferyl N-acetyl-β-D-
glucosaminide [4-MU(GlcNAc)] (Sigma) was added
to final concentration of 0.025 mg·mL−1; gel was
agitated gently in this solution for 5 min at 37 oC prior
to detection under UV light.

2.6 Extraction and purification of total
RNA in L. lecanii grown in SSF

Total RNA extraction and purification was carried
out with TrizolR (Invitrogen). Samples of fungi
grown in glucose, chitin and S. purpurascens cuticle
(stationary phase), were placed in a mortar with
liquid N2 and then 1 mL TrizolR was added. The
samples were centrifuged at 14,000 rpm for 5 min
at RT. Supernatant was transferred into another flask
with 200 µL chloroform and vigorously stirred for
15 s; then incubated at RT for 3 min. Then it was
centrifuged at 4oC, 12,000 rpm for 15 min. The
watery phase was collected and precipitated with 500
µL isopropanol, then centrifuged at 4oC, 12000 rpm
during 30 min. To this precipitation 1 mL ethanol
75% was added, then centrifuged at 7,500 rpm, 4oC
for 5 min. Total RNA was resuspended in 40 µL
H4O-DEPC. Total RNA was kept at -20◦C for later
use. RNA concentration was determined by measuring

its absorbance at 260 nm and total RNA quality was
analyzed in electrophoresis in 1% agarose gel with a
UV light.

2.7 RT-PCR

5S Ribosomal RNA (control) and mRNA from chitII
gene of L. lecanii were analyzed through one step
reverse transcription (Qiagen One Step RT-PCR kit,
CA. USA) following manufacturer instructions. A
total of 0.5 µg total RNA was used for reverse
transcriptase with Superscript II at 50◦C for 30 min,
followed by specific oligonucleotides amplification of
chitII gene of V. lecanii (Zhen-Xiang et al., 2005).
Conditions for amplification were: 15 min at 95◦C,
followed by 30 amplification cycles at 94◦C 30 s, 60◦C
30 s, and 72◦C 1 min. After amplification, RT-PCR
products were analyzed in 1.5% agarose gels, and
stained with ethidium bromide for luminescence in a
UV transilluminator (Syngene).

2.8 Densitometric analysis

Pictures of gel with RT-PCR products were taken
under exposition to UV light using Kodak EDAS 290
system. Amplicons (cDNA bands) were determined as
the integrated area (pixels) in band intensity through
densitometric analysis with Kodak Digital Science
1D 3.6 software. Numeric values for cDNA bands
intensity were corrected with the values of 5S RNA, as
these express themselves at a relatively constant level
in cells and are generally used in semi-quantitative
systems of RT-PCR for analyzing relative efficiency of
each individual PCR. Decimal dilutions of the cDNA
mixture were used to verify lineal correlation among
band intensity (pixels) and the initial cDNA.

3 Results and discussion

3.1 Chitinolytic activity from L. lecanii

L. lecanii was grown in three SSF mediums containing
different sources of carbon and energy: glucose, chitin
and S. purpurascens cuticle during 144 h. Maximum
chitinolytic activity was observed when fungi was
grown in chitin media probably to the greater
bioavailability of the chitin polymer (β-(1,4)-N-acetyl-
D-glucosamine) compared to S. purpurascens cuticle.
This could probably be due to the fact that the
complex substrates used were not soluble. This
later media is a more complex polymeric structure
that consists of predominantly of proteins and chitin
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chains and in a lesser quantity minerals and lipids
(Kramer et al., 1988). This makes the synergetic
action of protease, chitinase and lipase necessary
for its metabolization (Clarkson and Charnley, 1996;
Beys et al., 2005). Chitinolytic activity was four
times lower with S. purpurascens cuticle when
compared to chitin media (Fig. 1). Assuming that
a basal production of limited hydrolyzing enzymes
for the polymer exists liberating soluble complexes
assimilated by the microorganism, which induce
enzymes synthesis. Chitinase production is ruled
by an induction/repression system in which chitin
degradation products like N-acetyl-D-glucosamine
work as inductors (St. Leger et al., 1986a). Some
enzymes are synthesized only in presence of a specific
substrate. This can be observed in L. lecanii chitinases
where there were high levels of chitinolytic activity
in response to chitin presence, its usual substrate and
in a lesser degree in complex substrates such as S.
purpurascens cuticle. Bidochka and Khachatourians,
(1988) determined a high chitinolytic activity when
Beauveria bassiana was grown in insects cuticle,
liberating N-acetyl-D-glucosamine in enough quantity
to be used as a carbon an nitrogen source for its
growth. In the same way, Sureh and Chandrasekaran,
(1999) determined an inductor effect from colloidal
chitin in a SSF system using B. bassiana.

Also Barranco et al. (2009) determined the
inductive capacity of shrimp shell in the synthesis
of chitinolytic enzymes from L. lecanii in SSF.
Bing-Lang et al. (2003); Barreto et al. (2004)
showed the inductive effect of chitin in extracellular
chitinolytic activity of L. lecanii and Metarhizium
anisopliae in a submerged culture system. When
L. lecanii was cultured in a glucose medium as the
only carbon source, chitinolytic activity was minimum
(basal level) (Fig. 1). Invertase and tannase basal
activity were determined in Aspergillus niger Aa-
20 using glucose as the only carbon source in SSF
(Aguilar et al., 2001; Aranda et al., 2006). Microbial
chitinases are generally detected in low levels during
growth in simple substrates (Shirai, 2006). Results
obtained show that synthesis of chitinase from L.
lecanii is subject to regulative mechanisms when
grown in different carbon sources under the conditions
mentioned above.

3.2 Electrophoresis and zymogram

Fungi extracellular hydrolytic enzymes are important
for host cuticle degradation during infection because
they provide nutrients during their growth (St. Leger
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Fig 1. Chitinolytic activity of L. lecanii grown in different carbon sources in a SSF system.   284 
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Fig 1. Chitinolytic activity of L. lecanii grown in
different carbon sources in a SSF system. (�) Glucose,
(�) S. purpurascens cuticle, (N) Chitin.
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Fig 2. (A) SDS-PAGE and (B) zymogram of
proteins of N-acetyl-glucosaminidase activity from L.
lecanii crude extract grown in glucose, chitin and S.
purpurascens cuticle. 1) Glucose 48h 2) Glucose
96h 3) Glucose 144h 4) Chitin 48h 5) Chitin 96h
6) Chitin 144h 7) S. purpurascens cuticle 48h 8) S.
purpurascens cuticle 96h 9) S. purpurascens cuticle
144h. M) Protein marker.

100 www.rmiq.org



Mayorga-Reyes et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 11, No. 1 (2012) 97-104

et al., 1995). The determination of proteic profile of
L. lecanii was carried out with the crude extract of
fungi grown in glucose, chitin and S. purpurascens
cuticle at 48, 96 and 144 h of fermentation in SSF.
As shown in Fig. 2A, extracellular total protein
analysis through SDS-PAGE showed that L. lecanii
synthetized a great number of proteins when grown
in a simple medium as well as in a complex medium.
Nevertheless, proteic profile among glucose, chitin
and grasshopper cuticle are different, certain proteic
bands at approximately 24 kDa and 33 kDa appear
only in chitin and S. purpurascens cuticle. These
bands might be proteins with chitinolytic activity
similar to that reported in Lecanicillium fungicola
(Ramirez et al., 2006). Fang et al. (2005)
reported a chitinase CHIT1 of B. bassiana with a
molecular mass of about 33 kDa. Fig 2B shows
fluorescence of 4-MUGlcNAc with enzymatic extract
in SSF as consequence of β-N-acetyl-glucosaminidase
activity. When fungus was growth in chitin, lysis
zones with higher intensity were detected in the gel
as fluorescence intensity raised (chitinolytic activity)
when the fungus was reaching exponential growth
phase (96 h) and stationary phase (144 h). The
same phenomenon, but with lesser fluorescence
intensity was observed when fungus was grown in S.
purpurascens cuticle. In both cases, band intensity
was increased when fungus was grown in chitin and S.
purpurascens cuticle during the fermentation process.
When fungus was growth in glucose, no lysis zone
was detected, probably due to the null chitinolytic
activity (Fig. 2B). According to these results, we
can observe the presence of only one β-N-acetyl-
glucosaminidase isoform. Analysis of the respective
bands indicated that chitinase has a molecular mass
of approximately 23 kDa (Fig. 2A and B). Molecular
characterization is necessary in order to forecast the
potential role that chitinase could have in insect
lysis because low molecular mass enzymes have the
advantage that they can easily penetrate chitin fibers.
Chitinolytic enzymes with low molecular mass have
been previously reported in several microorganisms
like Neurospora crassa, 20 kDa (Zarain and Arroyo,
1983), Pycnoporus cinnabarinus, 38 kDa (Ohtakara,
1988), and Trichoderma harzianum, 33 kDa (De la
Cruz et al., 1992).

3.3 Expression of chit II gene from L.
lecanii

Studies on the expression of chitinolytic genes in fungi
have been generally done in SmF (Baratto et al.,

2006; Choquer et al., 2007) or in surface adhesion
fermentations (SAF) (Villena et al., 2009). There
are not enough reports in the literature about studies
on regulation of chitinolytic genes in fungi in SSF
and for that reason we chose to study the effect of
different substrates in the expression of chitII gene
of L. lecanii. Fig. 3 shows differential expression
of chitII gene detected when L. lecanii was grown
in glucose, chitin and S. purpurascens cuticle, in
a SSF system. When fungus was grown in non-
inductive conditions using glucose as only carbon
source, under conditions stated before (Material and
methods), a minimum expression of chitII gene was
detected. Same results were observed by Baratto et al.,
(2006) in M. anisopliae when glucose was used and
it acted as repressor in the expression of chitII gene
using RT-PCR. The catabolic repression effect caused
by glucose has been previously described for different
routes in carbohydrates degradation (Ronne, 1995).
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Fig 3. Expression of mRNA of chitII gene of L. lecanii grown in SSF, determined by RT-334 

PCR, using glucose (A), chitin (B) and S. purpurascens cuticle (C) as carbon sources. 335 
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Fig 3. Expression of mRNA of chitII gene of L.
lecanii grown in SSF, determined by RT-PCR, using
glucose (A), chitin (B) and S. purpurascens cuticle
(C) as carbon sources. Underneath gel on each panel
represents 5S ribosomal transcript, used to normalize
RNA total quantity.

In regards to complex substrates like chitin and
S. purpurascens cuticle, expression of chitII gene
of L. lecanii resulted in a 33% increase in chitin
compared to the expression when fungus grew on
S. purpurascens cuticle. These results confirmed
that chitin and insect exoskeleton act as inducers
of chitinolytic gene of L lecanii. Garcia et al.
(1994) showed that chitin and residues of cellular
wall fungal strongly induce expression of chit42
gene of T. harzianum. The results in Fig. 4 show
the chitII/5S ribosomal gene proportion, measured
by densitometry (pixels). Numeric values for band
intensity of cDNA were corrected with 5S ribosomal
band values expressed as constant values in cells,
commonly used in RT-PCR semi-quantitative systems
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in order to analyze relative efficiency of each PCR
product. RT-PCR analysis indicates that expression of
chitII gene is controlled by the nature of the carbon
source in the culture medium.
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Fig 4. Effect of the carbon source in expression of mRNA that codifies chitII gene from L. 352 

lecanii grown in SSF. Results are shown as the proportion of chitII/5S ribosomal RNA, 353 
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Fig 4. Effect of the carbon source in expression
of mRNA that codifies chitII gene from L. lecanii
grown in SSF. Results are shown as the proportion of
chitII/5S ribosomal RNA, measured by densitometry
and are the average of two different experiments
carried out by triplicate. Lines over bars represent
standard deviations.

Conclusions

We can suggest that when the L. lecanii grew in
glucose, the chitinolytic activity was at basal level,
this matches the results obtained in the zymographic
analysis and when we detected the transcripts of chitII
gene. We also observed that chitin complex substrates
and S. purpurascens cuticle induced the expression of
chitinolytic genes, where chitin was the best inductor
substrate of chitinolytic enzymes in the fungus. This
suggests that chitinolytic activity in L. lecanii is
subject to an induction/repression mechanism.
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